MSc Intelligent Embedded Systems

Dept. of Measurement and Information Systems (MIT)

What kind of job will you be prepared for?

Application engineer

Development of intelligent applications based on embedded systems

MSc Intelligent Embedded Systems

Perception and signal processing

- (1. semester, "A1" course)
 - Perception of physical quantities, sensors
 - Preprocessing of signals
 - Feature extraction
 - · Signal processing in transformed domain: DFT, Wavelet
 - Filter design

Embedded artificial intelligence

(2. semester, "A2" course)

- Data analysis, data cleaning
- Linear and logistic regression, clustering
- Neural networks
- Convolutional neural networks
- Prediction
- special purpose hardware components

Intelligent embedded systems laboratory

- (2. semester, "A1" laboratory)
 - Digital Signal Processors
 - Digital filters
 - Adaptive filters
 - Active noise control
 - Data acquisition systems
 - Real-time signal processing
 - Implementation in environment with low computational resources

BME Dept. of Measurement and Information Systems

Embedded artificial intelligence laboratory

- (3. semester, "A2" laboratory)
 - Training of neural networks
 - Neural networks on GPU
 - Implementation of classification algorithms
 - Kalman filter
 - Sensor fusion
 - Joint time-frequency analysis

MSC Intelligent Embedded Systems

Applications of data processing

(3. semester, "B" course)

- Model-based signal processing
- Digital twin
- Predictive maintenance
- Sensorless principle

Common course for all specializations

Safety-critical embedded systems

- (4. semester, "C" course)
 - Development process, lifecycle models
 - Design of fault-tolerant architectures
 - · Hazard and reliability analysis
 - Safe software implementation
 - Testing methods (MIL, SIL, PIL, HIL)

Recommended common courses

Measurement theory (common course)

- Decision and estimation theory
- Model fitting
- · Filter theory, optimal filtering
- Model-based signal processing

Topics of Project laboratory and Thesis work

- Model-based artificial intelligence
- Active noise control
- Digital sound synthesis of musical instruments
- · Vibration analysis of power steering
- Analysis of Neural networks for roundoff errors
- Biomedical diagnosis (smart watch, analysis of blood pressure, ECG, EEG signals)
- Identification of authors based on handwriting by means of machine learning

Elective courses

- ARM Cortex core microcontrollers
- Bioinformatics

MSc Intelligent Embedded Systems

Knowledge gained

- Embedded systems
- Modeling for development of intelligent applications, information processing methods
- Embedded artificial intelligence, deep learning
- · Digital signal processing
- · Intelligent algorithms, prediction methods
- Development process of safety-critical applications
- Knowledge immediately applicable on job market

Preparation towards PhD

Job opportunities:

Head of specialization: Prof. Tamás Dabóczi (daboczi@mit.bme.hu)

