Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics

    Belépés
    címtáras azonosítással

    vissza a tantárgylistához   nyomtatható verzió    

    Matematika A3 villamosmérnököknek

    A tantárgy angol neve: Mathematics A3 for Electrical Engineers

    Adatlap utolsó módosítása: 2017. június 13.

    Budapesti Műszaki és Gazdaságtudományi Egyetem
    Villamosmérnöki és Informatikai Kar
    Tantárgykód Szemeszter Követelmények Kredit Tantárgyfélév
    TE90AX09 3 2/1/0/v 4  
    3. A tantárgyfelelős személy és tanszék Dr. Simon András,
    A tantárgy tanszéki weboldala http://www.math.bme.hu/~asimon/index.html#A3
    4. A tantárgy előadója Dr. Simon András
    5. A tantárgy az alábbi témakörök ismeretére épít Lineáris algebra, egy- és többváltozós függvények differenciál- és integrálszámítása.
    6. Előtanulmányi rend
    Kötelező:
    TárgyEredmény( "BMETE90AX59" , "jegy" , _ ) >= 2
    VAGY TárgyEredmény( "BMETE90AX02" , "jegy" , _ ) >= 2
    VAGY TárgyEredmény( "BMETE90AX03" , "jegy" , _ ) >= 2
    VAGY TárgyEredmény( "BMETE901918" , "jegy" , _ ) >= 2
    VAGY TárgyEredmény( "BMETE90AX26" , "jegy" , _ ) >= 2

    A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

    A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

    Ajánlott:
    Matematika A2a (BMETE90AX02) VAGY Matematika A2B (BMETE90AX03) VAGY Matematika A2f (BMETE90AX26)
    7. A tantárgy célkitűzése A VIK Villamosmérnök szakának kötelező alaptárgya.
    8. A tantárgy részletes tematikája

    1. Differenciálegyenletek osztályozása.  Szétválasztható és arra
    visszavezethetõ (homogén fokszámú és lineáris argumentú)
    diff. egyenletek. Az egzakt diff. egyenlet és annak
    megoldása. Multiplikátorral egzakttá tehetõ diff. egyenlet.

    2. Lineáris diff. egyenletek általános megoldásának szerkezete. Az
    elsõrendû inhomogén lineáris egyenlet. Állandók variálásának
    módszere. Állandó együtthatós másodrendû lineáris
    differenciálegyenlet. Másodrendû, inhomogén egyenlet megoldása
    próbafüggvénnyel. Állandó együtthatós homogén lineáris rendszerek
    megoldása különbözõ valós sajátértékek esetén. Inhomogén
    egyenletrendszerek partikuláris megoldásának keresése állandók
    variálásával.

    3. A Laplace transzformáció.  Definíció, mûveleti szabályok. Derivált
    Laplace transzformáltja.  Elemi függvények transzformáltjai. Lineáris
    differenciálegyenletek és egyenletrendszerek megoldása Laplace
    transzformációval.

    4. Görbék és felületek, és ezek irányítása és mértéke. Skaláris- és
    vektormezõk.

    5. Vektormezõk differenciálása, divergencia és rotáció. Forrás- és
    örvénysûrûség.

    6. Görbe- és felületmenti integrálok. Integrálátalakító
    tételek. Gauss és Stokes tételei.

    7. Potenciálelmélet. Konzervatív vektormezõk, potenciál. Görbementi
    integrál függetlensége az úttól.

    9. A tantárgy oktatásának módja (előadás, gyakorlat, laboratórium) 2 óra előadás, 1 óra gyakorlat.
    10. Követelmények

    A gyakorlatok látogatása kötelező. A gyakorlatokon a jelenlétet minden alkalommal ellenőrizzük, 30%-ot meghaladó hiányzás esetén a tantárgyból sem aláírás sem kreditpont nem szerezhető.
     
    Az aláírás megszerzésének feltétele:
    A jelenléti követelmények teljesítésén túl a zárthelyi esetében a maximálisan elérhető pontok minimum 30%-át kell megszerezni. A zárthelyi pótolható.

    Vizsgaidőszakban: Írásbeli és/vagy szóbeli vizsga az alábbiak szerint.

    Csak aláírást szerzett hallgató jelentkezhet vizsgára. A vizsga írásbeli és esetleg szóbeli részbõl áll. Az írásbeli vizsga mindenki számára kötelezõ. A vizsga írásbeli részén legalább 40%-os eredményt kell elérni, ennél rosszabb írásbeli eredmény esetén a vizsgajegy elégtelen. Azon hallgatók esetében, akiknél az évközi zárthelyi pontszáma meghaladja a vizsgapontszámot (ami legalább 40%-os), a zárthelyi pontszámát 50%-os súllyal figyelembe vesszük. (Vagyis ekkor a zárthelyi és a vizsgadolgozatnak a számtani közepét tekintjük az írásbeli vizsga pontszámának.)  Ha p jelöli azt, hogy  a vizsgán az elöbbiek alapján elért pontszám a maximum pontszámnak hány %-a, akkor a következõ helyzet áll elõ:

    •     p<40% esetén a vizsgajegy elégtelen.
    •     55% <= p a hallgató kérésére szóbeli nélkül elégséges vizsgajegy adható.
    •     p>70% esetén a hallgató kérésére szóbeli nélkül közepes vizsgajegy adható.

     

    Jó és jeles vizsgajegyért kötelezõ szóbeli vizsgát tenni.


    11. Pótlási lehetőségek

    A félévközi zárthelyi egyszer  pótolható illetve javítható a TVSz előírásai szerint.

    A TVSZ-ben rögzített módon javító, illetve ismétlõ javító vizsga tehetõ. Javítás alkalmával a vizsgajegy le is rontható.

    12. Konzultációs lehetőségek Vizsga előtt szervezett konzultációk.
    13. Jegyzet, tankönyv, felhasználható irodalom

     

    Thomas-féle kalkulus (Typotex , 2006)

    Sereny Gy., Formális és szemléletes vektoranalízis (http://www.math.bme.hu/~sereny/LINKEK/vektanal.ps.gz)

     

    14. A tantárgy elvégzéséhez átlagosan szükséges tanulmányi munka
    Kontakt óra42
    Félévközi készülés órákra26
    Felkészülés zárthelyire16
    Házi feladat elkészítése0
    Kijelölt írásos tananyag elsajátítása 
    Vizsgafelkészülés36
    Összesen120
    15. A tantárgy tematikáját kidolgozta Dr. Serény György
    IMSc tematika és módszer Az IMSc programban résztvevő hallgatók által látogatott gyakorlatokon az anyag magasabb szintű, mélyebb elsajátítása érdekében más feladatokat dolgozunk fel, mint a többi kurzuson. Kevesebb bevezető, rutin, gyakorló feladat szerepel és több nehezebb, gondolkodtatóbb feladat lesz.
    IMSc pontozás

     A tárgyból összesen 20 IMSc pont szerezhető, mégpedig a következő
    módon.  A zárthelyin és a vizsgazárthelyin szerepel +30%
    megjelölt, a szokásosnál nehezebb példa. Ennek megoldására nem
    áll rendelkezésre külön idő, ennek eredménye nem számít be a
    zárthelyi eredményébe, és csak jeles szintű zárthelyik esetében
    kerül javításra. A félévközi zárthelyin és a
    vizsgazárthelyin is legfeljebb 10 IMSc pont szerezhető a megjelölt
    feladatokból, mégpedig oly módon, hogy félévközi zárthelyiken és
    a vizsgazárthelyin is 3%-onként 1 pont jár. Az
    IMSc pontok megszerzése a programban nem résztvevő hallgatók
    számára is biztosított.